23 #ifndef BINARY_NEURON_H
24 #define BINARY_NEURON_H
47 template<
class TGainfunction>
182 template<
class TGainfunction>
192 template<
class TGainfunction>
196 if (receptor_type != 0)
201 template<
class TGainfunction>
205 if (receptor_type != 0)
210 template<
class TGainfunction>
215 if (receptor_type != 0)
217 return B_.logger_.connect_logging_device(dlr, recordablesMap_);
220 template<
class TGainfunction>
232 template<
class TGainfunction>
const Name recordables("recordables")
List of recordable state data (Device parameters)
Definition: nest_names.h:244
double last_in_gid_
gid of the last spike being received
Definition: binary_neuron.h:115
Binary stochastic neuron with linear or sigmoidal gain function.
Definition: binary_neuron.h:48
Definition of Archiving_Node which is capable of recording and managing a spike history.
const Name receptor_type("receptor_type")
Connection parameters.
Definition: nest_names.h:240
double_t tau_m_
mean inter-update interval in ms (acts like a membrane time constant).
Definition: binary_neuron.h:99
const Name d("d")
Specific to Izhikevich 2003.
Definition: nest_names.h:83
double h_
total input current to neuron
Definition: binary_neuron.h:114
State_()
Default initialization.
Definition: binary_neuron_impl.h:57
State_ S_
Definition: binary_neuron.h:171
void set_sender(Node &)
Change pointer to sending Node.
Definition: event.h:714
librandom::ExpRandomDev exp_dev_
Definition: binary_neuron.h:150
bool y_
output of neuron in [0,1]
Definition: binary_neuron.h:113
Variables_ V_
Definition: binary_neuron.h:172
void handle(SpikeEvent &)
Handle incoming spike events.
Definition: binary_neuron_impl.h:212
Event for electrical currents.
Definition: event.h:420
long_t rport
Connection port number to distinguish incoming connections, also called receiver port.
Definition: nest.h:147
RingBuffer spikes_
buffers and sums up incoming spikes/currents
Definition: binary_neuron.h:135
double_t get_input__() const
Read out the summed input of the neuron (= membrane potential)
Definition: binary_neuron.h:159
Parameters_ P_
Definition: binary_neuron.h:170
Map names of recordables to data access functions.
Definition: recordables_map.h:58
Definition: nest_time.h:130
State variables of the model.
Definition: binary_neuron.h:112
void set_status(const DictionaryDatum &d)
Definition: archiving_node.cpp:185
Time t_next_
time point of next update
Definition: binary_neuron.h:116
Exception to be thrown if the specified receptor type does not exist in the node. ...
Definition: exceptions.h:254
const Name target("target")
Connection parameters.
Definition: nest_names.h:282
Independent parameters of the model.
Definition: binary_neuron.h:97
void get_status(DictionaryDatum &) const
Definition: binary_neuron.h:222
void init_state_(const Node &proto)
Private function to initialize the state of a node to model defaults.
Definition: binary_neuron_impl.h:132
port send_test_event(Node &, rport, synindex, bool)
Send an event to the receiving_node passed as an argument.
Definition: binary_neuron.h:184
void set_status(const DictionaryDatum &)
Definition: binary_neuron.h:234
a node which archives spike history for the purposes of timing dependent plasticity ...
Definition: archiving_node.h:50
long_t port
Connection port number to distinguis outgoing connections.
Definition: nest.h:155
virtual void handle(SpikeEvent &e)
Handle incoming spike events.
Definition: node.cpp:198
port handles_test_event(SpikeEvent &, rport)
Check if the node can handle a particular event and receptor type.
Definition: binary_neuron.h:194
double double_t
Double precision floating point numbers.
Definition: nest.h:93
virtual port handles_test_event(SpikeEvent &, rport receptor_type)
Check if the node can handle a particular event and receptor type.
Definition: node.cpp:203
Request data to be logged/logged data to be sent.
Definition: event.h:486
Buffers_(binary_neuron &)
Definition: binary_neuron_impl.h:96
static RecordablesMap< binary_neuron< TGainfunction > > recordablesMap_
Mapping of recordables names to access functions.
Definition: binary_neuron.h:177
unsigned char synindex
Unsigned char type for enumerations of synapse types.
Definition: nest.h:115
Buffers of the model.
Definition: binary_neuron.h:130
binary_neuron()
Definition: binary_neuron_impl.h:111
Default types used by the NEST kernel.
void get_status(DictionaryDatum &d) const
Definition: archiving_node.cpp:175
Event for spike information.
Definition: event.h:320
void init_buffers_()
Private function to initialize the buffers of a node.
Definition: binary_neuron_impl.h:139
Base class for all NEST network objects.
Definition: node.h:96
TGainfunction gain_
Definition: binary_neuron.h:84
RingBuffer currents_
Definition: binary_neuron.h:136
void set(const DictionaryDatum &, const Parameters_ &)
Definition: binary_neuron_impl.h:92
librandom::RngPtr rng_
Definition: binary_neuron.h:149
double_t get_output_state__() const
Read out the binary_neuron state of the neuron.
Definition: binary_neuron.h:156
Class ExpRandomDev Create exponential random numbers.
Definition: exp_randomdev.h:52
long long_t
Integer number with at least 32 bit.
Definition: nest.h:96
Parameters_()
Sets default parameter values.
Definition: binary_neuron_impl.h:50
const double e
Definition: numerics.cpp:62
void set(const DictionaryDatum &)
Set values from dicitonary.
Definition: binary_neuron_impl.h:76
void update(Time const &, const long_t, const long_t)
Bring the node from state $t$ to $t+n*dt$.
Definition: binary_neuron_impl.h:165
void calibrate()
Re-calculate dependent parameters of the node.
Definition: binary_neuron_impl.h:148
Internal variables of the model.
Definition: binary_neuron.h:148
Time t_last_in_spike_
time point of last input spike seen
Definition: binary_neuron.h:117
Buffer Layout.
Definition: ring_buffer.h:77
Buffers_ B_
Definition: binary_neuron.h:173
UniversalDataLogger< binary_neuron > logger_
Logger for all analog data.
Definition: binary_neuron.h:140